Section 3.1

Math 231

Hope College

A vector space over \mathbb{R} is a set *V* of objects (called vectors), together with two operations, addition and scalar multiplication, which satisfy the following:

- *V* is closed under addition.
- *V* is closed under scalar multiplcation.
- So For all $\mathbf{x}, \mathbf{y} \in V$, we have $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$.
- So There exists $\mathbf{0} \in V$ such that for all $\mathbf{x} \in V$, we have $\mathbf{x} + \mathbf{0} = \mathbf{x}$. (The vector $\mathbf{0}$ is called a **zero vector** for *V*.)
- So For each x ∈ V, there exists y ∈ V such that x + y = 0. (y is called an additive inverse of x.)
- Sor all $\mathbf{x} \in V$, we have $1\mathbf{x} = \mathbf{x}$.
- **③** For all $\alpha, \beta \in \mathbb{R}$ and all $\mathbf{x} \in V$, we have $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$.
- **③** For all $\alpha \in \mathbb{R}$ and all $\mathbf{x}, \mathbf{y} \in V$, we have $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$.
- **(**) For all $\alpha, \beta \in \mathbb{R}$ and all $\mathbf{x} \in V$, we have $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$.

• For all n, \mathbb{R}^n is a vector space.

- **2** For all $m, n, M_{m,n}(\mathbb{R})$ is a vector space.
- 3 The set $\mathcal{P}(\mathbb{R})$ of all polynomials in one variable x with real coefficients is a vector space.
- The set $\mathcal{P}_n(\mathbb{R})$ of all polynomials of degree at most *n* in one variable *x* with real coefficients is a vector space.
- If the set $\mathcal{F}(\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} is a vector space.

• For all n, \mathbb{R}^n is a vector space.

- **2** For all $m, n, M_{m,n}(\mathbb{R})$ is a vector space.
- 3 The set $\mathcal{P}(\mathbb{R})$ of all polynomials in one variable x with real coefficients is a vector space.
- The set $\mathcal{P}_n(\mathbb{R})$ of all polynomials of degree at most *n* in one variable *x* with real coefficients is a vector space.
- If the set $\mathcal{F}(\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} is a vector space.

- For all n, \mathbb{R}^n is a vector space.
- **2** For all $m, n, M_{m,n}(\mathbb{R})$ is a vector space.
- Solution The set $\mathcal{P}(\mathbb{R})$ of all polynomials in one variable *x* with real coefficients is a vector space.
- The set $\mathcal{P}_n(\mathbb{R})$ of all polynomials of degree at most *n* in one variable *x* with real coefficients is a vector space.
- **(**) The set $\mathcal{F}(\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} is a vector space.

- For all n, \mathbb{R}^n is a vector space.
- **2** For all $m, n, M_{m,n}(\mathbb{R})$ is a vector space.
- Solution The set $\mathcal{P}(\mathbb{R})$ of all polynomials in one variable *x* with real coefficients is a vector space.
- The set $\mathcal{P}_n(\mathbb{R})$ of all polynomials of degree at most *n* in one variable *x* with real coefficients is a vector space.
- **I** The set $\mathcal{F}(\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} is a vector space.

- For all n, \mathbb{R}^n is a vector space.
- **2** For all $m, n, M_{m,n}(\mathbb{R})$ is a vector space.
- Solution The set $\mathcal{P}(\mathbb{R})$ of all polynomials in one variable *x* with real coefficients is a vector space.
- The set $\mathcal{P}_n(\mathbb{R})$ of all polynomials of degree at most *n* in one variable *x* with real coefficients is a vector space.
- **o** The set $\mathcal{F}(\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} is a vector space.

- The zero vector 0 is unique.
- ② Given $\mathbf{x} \in V$, its additive inverse is unique.
- Itet $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.
- **(**) For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .

- The zero vector 0 is unique.
- **2** Given $\mathbf{x} \in V$, its additive inverse is unique.
- 3 Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.
- **(**) For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .

- The zero vector 0 is unique.
- **2** Given $\mathbf{x} \in V$, its additive inverse is unique.
- 3 Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.
- **(**) For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .

- The zero vector 0 is unique.
- 2 Given $\mathbf{x} \in V$, its additive inverse is unique.
- 3 Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.
- **(**) For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .

- The zero vector 0 is unique.
- 2 Given $\mathbf{x} \in V$, its additive inverse is unique.
- 3 Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.

() For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .

- The zero vector 0 is unique.
- 2 Given $\mathbf{x} \in V$, its additive inverse is unique.
- 3 Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.
- For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .